
Stateflow®

Reference

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Stateflow® Reference
© COPYRIGHT 2006–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2006 Online only New for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release R2006b)
September 2007 Online only Rereleased for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Rereleased for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Rereleased for Version 7.5 (Release 2010a)
September 2010 Online only Rereleased for Version 7.6 (Release 2010b)
April 2011 Online only Rereleased for Version 7.7 (Release 2011a)
September 2011 Online only Rereleased for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 8.7 (Release 2016a)
September 2016 Online only Revised for Version 8.8 (Release 2016b)
March 2017 Online only Revised for Version 8.9 (Release 2017a)
September 2017 Online only Revised for Version 9.0 (Release 2017b)
March 2018 Online only Revised for Version 9.1 (Release 2018a)
September 2018 Online only Revised for Version 9.2 (Release 2018b)
March 2019 Online only Revised for Version 10.0 (Release 2019a)

Functions — Alphabetical List
1

Operators — Alphabetical List
2

Block Reference
3

v

Contents

Functions — Alphabetical List

1

sfclipboard
Stateflow clipboard object

Syntax
object = sfclipboard

Description
object = sfclipboard returns a handle to the Stateflow clipboard object, which you
use to copy objects from one chart or state to another.

Examples
Copy the init function from the Init chart to the Pool chart in the sf_pool model:

sf_pool;
% Get handle to the root object
rt = sfroot;
% Get handle to 'init' function in Init chart
f1 = rt.find('-isa','Stateflow.EMFunction','Name','init');
% Get handle to Pool chart
chP = rt.find('-isa','Stateflow.Chart','Name','Pool');
% Get handle to the clipboard object
cb = sfclipboard;
% Copy 'init' function to the clipboard
cb.copy(f1);
% Paste 'init' function to the Pool chart
cb.pasteTo(chP);
% Get handle to newly pasted function
f2 = chP.find('-isa','Stateflow.EMFunction','Name','init');
% Reset position of new function in the Pool chart
f2.Position = [90 180 90 60];

1 Functions — Alphabetical List

1-2

See Also
sfgco | sfnew | sfroot | stateflow

Topics
“Copy and Paste Stateflow Objects”
“Create Charts by Using the Stateflow API”
“Getting a Handle on Stateflow API Objects”
“Access the Chart Object”

Introduced before R2006a

 sfclipboard

1-3

sfclose
Close chart

Syntax
sfclose
sfclose('chart_name')
sfclose('all')

Description
sfclose closes the current chart.

sfclose('chart_name') closes the chart called 'chart_name'.

sfclose('all') closes all open or minimized charts. 'all' is a literal character vector.

See Also
sfnew | sfopen | stateflow

Introduced in R2006a

1 Functions — Alphabetical List

1-4

sfdebugger
Open Stateflow Debugger

Syntax
sfdebugger
sfdebugger('model_name')

Description
sfdebugger opens the Stateflow Debugger for the current model.

sfdebugger('model_name') opens the debugger for the Simulink® model called
'model_name'. Use this input argument to specify which model to debug when you have
multiple models open.

See Also
sfexplr | sfhelp | sflib

Topics
“Debug Run-Time Errors in a Chart”

Introduced in R2006a

 sfdebugger

1-5

sfexplr
Open Model Explorer

Syntax
sfexplr

Description
sfexplr opens the Model Explorer. A model does not need to be open.

See Also
sfdebugger | sfhelp | sflib

Topics
“Use the Model Explorer with Stateflow Objects”

Introduced in R2006a

1 Functions — Alphabetical List

1-6

sfgco
Recently selected objects in chart

Syntax
object = sfgco

Description
object = sfgco returns a handle or vector of handles to the most recently selected
objects in a chart.

Output Arguments
object

Handle or vector of handles to the most recently selected objects in a chart

Empty matrix No charts are open, or you have no edited
charts.

Handle to the chart most recently clicked You clicked in a chart, but did not select any
objects.

Handle to the selected object You selected one object in a chart.
Vector of handles to the selected objects You selected multiple objects in a chart.
Vector of handles to the most recently
selected objects in the most recently
selected chart

You selected multiple objects in multiple
charts.

Examples
Zoom in on a state after clicking it:

 sfgco

1-7

myState = sfgco;
% Zoom in on the selected state
myState.fitToView;

See Also
sfnew | sfroot | stateflow

Topics
“Create Charts by Using the Stateflow API”
“Getting a Handle on Stateflow API Objects”
“View Stateflow Graphical Objects”

Introduced before R2006a

1 Functions — Alphabetical List

1-8

sfhelp
Open Stateflow online help

Syntax
sfhelp

Description
sfhelp opens the Stateflow online help in the MATLAB® Help browser.

See Also
sfdebugger | sfexplr | sfnew | stateflow

Introduced before R2006a

 sfhelp

1-9

sflib
Open Stateflow library window

Syntax
sflib

Description
sflib opens the Stateflow block library. From this library, you can drag Stateflow blocks
into Simulink models and access the Stateflow Examples Library.

See Also
sfdebugger | sfexplr | sfhelp | sfnew

Introduced in R2006a

1 Functions — Alphabetical List

1-10

sfnew
Create Simulink model that contains an empty Stateflow block

Syntax
sfnew
sfnew chart_type
sfnew model_name
sfnew chart_type model_name

Description
sfnew creates an untitled Simulink model that contains an empty Stateflow chart.

sfnew chart_type creates an untitled model that contains an empty block of type
chart_type.

sfnew model_name creates a model called model_name that contains an empty chart.

sfnew chart_type model_name creates a model called model_name that contains an
empty block of type chart_type.

Examples

Untitled Model with Chart

Create an untitled model that contains an empty Stateflow chart that uses MATLAB as the
action language.

sfnew

 sfnew

1-11

Untitled Model with Truth Table

Create an untitled model called MyModel that contains an empty Stateflow truth table
block.

sfnew -TT

Named Model with Chart

Create a model called MyModel that contains an empty Stateflow chart that uses MATLAB
as the action language.

sfnew 'MyModel'

Named Model with Moore Chart

Create a model called MyModel that contains an empty Stateflow chart that uses Moore
semantics.

sfnew -Moore 'MyModel'

Input Arguments
chart_type — Type of block
-MATLAB (default) | -C | -Mealy | -Moore | -STT | -TT

Type of Stateflow block to add to empty model, specified as one of these options.

Option Description
-MATLAB Chart that supports MATLAB expressions in

actions
-C Chart that supports C expressions in

actions
-Mealy Chart that supports Mealy machine

semantics

1 Functions — Alphabetical List

1-12

Option Description
-Moore Chart that supports Moore machine

semantics
-STT State Transition Table
-TT Truth Table

model_name — Name of model
character vector

Name of the Simulink model, specified as a character vector.

Tips
• The default action language for new charts is MATLAB. To change the default action

language to C, use the command sfpref('ActionLanguage','C'). For more
information, see “Modify the Action Language for a Chart”.

• To create a standalone chart that you can execute as a MATLAB object, open the
Stateflow editor by using the edit function. For example, at the MATLAB Command
Window, enter:

edit chart.sfx

For more information, see “Create Stateflow Charts for Execution as MATLAB
Objects”.

See Also
sfhelp | sfprint | sfroot | sfsave | stateflow

Topics
“Differences Between MATLAB and C as Action Language Syntax”
“Overview of Mealy and Moore Machines”
“Reuse Combinatorial Logic by Defining Truth Tables”
“State Transition Tables in Stateflow”

Introduced before R2006a

 sfnew

1-13

sfopen
Open existing model

Syntax
sfopen

Description
sfopen prompts you for a model file and opens the model that you select from your file
system.

See Also
sfclose | sfdebugger | sfexplr | sflib | sfnew | stateflow

Introduced in R2006a

1 Functions — Alphabetical List

1-14

sfprint
Print graphical view of charts

Syntax
sfprint
sfprint(objects)
sfprint(objects,format)
sfprint(objects,format,outputOption)
sfprint(objects,format,outputOption,wholeChart)

Description
sfprint prints the current chart to the default printer.

sfprint(objects) prints all charts specified by objects to the default printer.

sfprint(objects,format) prints all charts specified by objects in the specified
format to output files. Each output file matches the name of the chart and the file
extension matches the format.

sfprint(objects,format,outputOption) prints all charts specified by objects in
the specified format to the file or printer specified in outputOption.

sfprint(objects,format,outputOption,wholeChart) prints all charts specified
by objects in the specified format to the file or printer specified in outputOption. As
specified in wholeChart, prints either a complete or current view.

Examples

Print open chart

sfprint

 sfprint

1-15

Prints current chart to the default printer.

Print all charts specified in path

sfprint('sf_car/shift_logic');

Prints the chart with the path ‘sf_car/shift_logic’ to the default printer.

Print chart specified in path to a JPG file format.

sfprint('sf_car/shift_logic','jpg')

Prints a copy of the chart ‘sf_car/shift_logic’ in JPG format to the file
‘sf_car_shift_logic.jpg’.

Print chart in TIFF format to the clipboard.

sfprint(gcs,'tiff','clipboard')

Prints the chart in the current system to the clipboard in TIFF format.

Print the current view of a chart.

sfprint('sf_car/shift_logic','png','file',0)

Prints the current view of ‘sf_car/shift_logic’ in a PNG format to the file
‘sf_car_shift_logic.png’.

Input Arguments
objects — Identifier of charts to print
gcb (default) | gcs | character vector

Identifier of charts to print. Use:

1 Functions — Alphabetical List

1-16

• gcb to specify the current block of the model.
• gcs to specify the current system of the model.
• a character vector to specify the path of a chart, model, subsystem, or block.

Example: sfprint(gcs)

Prints all the charts in the current system to the default printer.
Example: sfprint('sf_pool/Pool')

Prints the complete chart with the path 'sf_pool/Pool' to the default printer.

format — Output format of printed charts
'bitmap' | 'jpg' | 'meta' | 'pdf' | 'png' | 'svg' | 'tiff'

Output format of the printed charts specified as one of these values:

'bitmap' Save the chart image to the clipboard as a
bitmap (for Windows® operating systems
only)

'jpg' Generate a JPEG file
'meta' Save the chart image to the clipboard as a

metafile (for Windows operating systems
only)

'pdf' Generate a PDF file
'png' Generate a PNG file
'svg' Generate an SVG file
'tiff' Generate a TIFF file

Example: sfprint('sf_car/shift_logic','jpg')

Prints the complete chart with the path 'sf_car/shift_logic' in a JPEG format to a
file in the current folder named 'sf_car_shift_logic.jpg'.
Data Types: char

outputOption — Name of the printer or output file
'file' (default) | character vector | 'clipboard' | 'promptForFile' | 'printer'

Name of the output file or printer specified as one of these values:

 sfprint

1-17

'file' Send output to a default file with the name
chart_name.file_extension. The file
name is the name of the chart, with an
extension that matches the output format.

character vector Specify the name of the output file with a
character vector.

'clipboard' Copy output to the clipboard
'promptForFile' Prompts the user interactively for path and

file name.
'printer' Send output to the default printer (use only

with 'ps', or 'eps' formats)

Example: sfprint('sf_car/shift_logic','png','myFile')

Prints the complete chart whose path is 'sf_car/shift_logic' in the PNG format to a
file in the current folder with the name 'myFile'.png.
Example: sfprint('sf_car/shift_logic,'pdf','promptForFile')

Prints all charts in the current block of the model in PDF format. A dialog box opens for
each chart to prompt you for the path and name of the output file.
Data Types: char

wholeChart — View of charts to print
1 (default) | 0

View of charts to print specified as a integer of value 0 or 1. A value of 1 prints the
complete views of all the charts, whereas a value of 0 prints the current views of all the
charts.
Example: sfprint(gcs,'png','file',0)

Prints the current view of all charts in the current system in PNG format using default file
names.

See Also
gcb | gcs | sfhelp | sfnew | sfsave | stateflow

1 Functions — Alphabetical List

1-18

Introduced before R2006a

 sfprint

1-19

sfroot
Root object

Syntax
object = sfroot

Description
object = sfroot returns a handle to the top-level object in the Stateflow hierarchy of
objects. Use the root object to access all other objects in your charts when using the API.

Examples
Zoom in on a state in your chart:

old_sf_car;
% Get handle to the root object
rt = sfroot;
% Find the state with the name 'first'
myState = rt.find('-isa','Stateflow.State','Name','first');
% Zoom in on that state in the chart
myState.fitToView;

See Also
sfclipboard | sfgco

Topics
“Create Charts by Using the Stateflow API”
“Getting a Handle on Stateflow API Objects”
“Access the Chart Object”

1 Functions — Alphabetical List

1-20

Introduced before R2006a

 sfroot

1-21

sfsave
Save chart in current folder

Syntax
sfsave
sfsave('model_name')
sfsave('model_name','new_model_name')
sfsave('Defaults')

Description
sfsave saves the chart in the current model.

sfsave('model_name') saves the chart in the model called 'model_name'.

sfsave('model_name','new_model_name') saves the chart in 'model_name' to
'new_model_name'.

sfsave('Defaults') saves the settings of the current model as defaults.

The model must be open and the current folder must be writable.

Examples
Develop a script to create a baseline chart and save it in a new model:

bdclose('all');

% Create an empty chart in a new model
sfnew;

% Get root object
rt = sfroot;

1 Functions — Alphabetical List

1-22

% Get model
m = rt.find('-isa','Simulink.BlockDiagram');

% Get chart
chart1 = m.find('-isa','Stateflow.Chart');

% Create two states, A and B, in the chart
sA = Stateflow.State(chart1);
sA.Name = 'A';
sA.Position = [50 50 100 60];
sB = Stateflow.State(chart1);
sB.Name = 'B';
sB.Position = [200 50 100 60];

% Add a transition from state A to state B
tAB = Stateflow.Transition(chart1);
tAB.Source = sA;
tAB.Destination = sB;
tAB.SourceOClock = 3;
tAB.DestinationOClock = 9;

% Add a default transition to state A
dtA = Stateflow.Transition(chart1);
dtA.Destination = sA;
dtA.DestinationOClock = 0;
x = sA.Position(1)+sA.Position(3)/2;
y = sA.Position(2)-30;
dtA.SourceEndPoint = [x y];

% Add an input in1
d1 = Stateflow.Data(chart1);
d1.Scope = 'Input';
d1.Name = 'in1';

% Add an output out1
d2 = Stateflow.Data(chart1);
d2.Scope = 'Output';
d2.Name = 'out1';

% Save the chart in a model called "NewModel"
% in current folder
sfsave('untitled','NewModel');

Here is the resulting model:

 sfsave

1-23

Here is the resulting chart:

See Also
find | sfclose | sfnew | sfopen | sfroot

Topics
“Create Charts by Using the Stateflow API”
“Create Charts by Using a MATLAB Script”

Introduced before R2006a

1 Functions — Alphabetical List

1-24

stateflow
Open Stateflow library window and create Simulink model that contains an empty chart

Syntax
stateflow

Description
stateflow creates an untitled Simulink model that contains an empty Stateflow chart.
The function also opens the Stateflow block library. From this library, you can drag
Stateflow blocks into models or access the Stateflow Examples Library.

Tips
• To only create a Simulink model that contains an empty Stateflow block, use the

sfnew function.
• To only open the Stateflow block library, use the sflib function.
• To create a standalone chart that you can execute as a MATLAB object, open the
Stateflow editor by using the edit function. For example, at the MATLAB Command
Window, enter:

edit chart.sfx

For more information, see “Create Stateflow Charts for Execution as MATLAB
Objects”.

See Also
edit | sflib | sfnew

Introduced before R2006a

 stateflow

1-25

Operators — Alphabetical List

2

after
Control chart execution with the after operator

Syntax
after(n,E)
after(n,time_unit)

Description
after(n,E) returns true if the base event E has occurred at least n times since
activation of the associated state. Otherwise, the operator returns false.

In a chart with no input events, after(n,tick) or after(n,wakeup) returns true if
the chart has woken up n times or more since activation of the associated state.

The after operator resets the counter for E to 0 each time the associated state
reactivates.

after(n,time_unit) returns true if n units of simulation time have elapsed since
activation of the associated state. Otherwise, the operator returns false. Specify
time_unit as seconds (sec), milliseconds (msec), or microseconds (usec).

The after operator resets the counter for sec, msec, and usec to 0 each time the
associated state reactivates.

Examples

Event Based State Action (on after)

A status message appears during each CLK cycle, starting 5 clock cycles after activation
of the state.

2 Operators — Alphabetical List

2-2

on after(5,CLK): status('on');

Event Based Transition

A transition out of the associated state occurs only on broadcast of a ROTATE event, but
no sooner than 10 CLK cycles after activation of the state.

ROTATE[after(10,CLK)]

Absolute-Time Based State Action (on after)

After 12.3 seconds of simulation time since activation of the state, temp variable becomes
LOW .

on after(12.3,sec): temp = LOW;

Absolute-Time Based Transition

After 8 milliseconds of simulation time have passed since activation of the state, a
transition out of the associated state occurs.

after(8,msec)

Tips
• You can use quotation marks to enclose the keywords 'tick', 'wakeup', 'sec',

'msec', and 'usec'. For example, after(5,'tick') is equivalent to
after(5,tick).

See Also
at | before | every

Topics
“Control Chart Execution by Using Temporal Logic”

 after

2-3

Introduced in R2014b

2 Operators — Alphabetical List

2-4

ascii2str
Convert array of type uint8 to string

Syntax
dest = ascii2str(A)

Description
dest = ascii2str(A) converts ASCII values in array A of type uint8 to a string.

Examples

Array of Type uint8 to String

Return string "Hi!"

A[0] = 72;
A[1] = 105;
A[2] = 33;
dest = ascii2str(A);

Tips
• Use in Stateflow charts that use C as the action language.

See Also
str2ascii | strcpy

Topics
“Manage Textual Information by Using Strings”

 ascii2str

2-5

“Share String Data with Custom C Code”

Introduced in R2018b

2 Operators — Alphabetical List

2-6

at
Control chart execution with the at operator

Syntax
at(n,E)

Description
at(n,E) returns true only at the nth occurrence of the base event E since activation of
the associated state. Otherwise, the operator returns false.

In a chart with no input events, at(n,tick) or at(n,wakeup) returns true if the chart
has woken up for the nth time since activation of the associated state.

The at operator resets the counter for E to 0 each time the associated state reactivates.

Examples

Event Based State Action (on at)

A status message on appears at exactly 10 CLK cycles after activation of the state.

on at(10,CLK): status('on');

Event Based Transition

A transition out of the associated state occurs only on broadcast of a ROTATE event, at
exactly 10 CLK cycles after activation of the state.

 at

2-7

ROTATE[at(10,CLK)]

Tips
• You can use quotation marks to enclose the keywords 'tick' and 'wakeup'. For

example, at(5,'tick') is equivalent to at(5,tick).
• Use of at as an absolute-time temporal logic operator is not supported. Use the after

operator instead. For more information, see “Use the after Operator to Replace the at
Operator”.

See Also
after | before | every

Topics
“Control Chart Execution by Using Temporal Logic”

Introduced in R2014b

2 Operators — Alphabetical List

2-8

before
Control chart execution with the before operator

Syntax
before(n,E)
before(n,time_unit)

Description
before(n,E) returns true if the base event E has occurred fewer than n times since
activation of the associated state. Otherwise, the operator returns false.

In a chart with no input events, before(n,tick) or before(n,wakeup) returns true
if the chart has woken up fewer than n times since activation of the associated state.

The before operator resets the counter for E to 0 each time the associated state
reactivates.

before(n,time_unit) returns true if fewer than n units of simulation time have
elapsed since activation of the associated state. Otherwise, the operator returns false.
Specify time_unit as seconds (sec), milliseconds (msec), or microseconds (usec).

The before operator resets the counter for sec, msec, and usec to 0 each time the
associated state reactivates.

Examples

Event Based State Action (on before)

The temp variable increments once per CLK cycle until the state reaches the MAX limit.

on before(MAX,CLK): temp++;

 before

2-9

Event Based Transition

A transition out of the associated state occurs only on broadcast of a ROTATE event, but
no later than 10 CLK cycles after activation of the state.

ROTATE[before(10,CLK)]

Absolute-Time Based Transition

If the variable temp exceeds 75 and fewer than 12.34 seconds have elapsed since
activation of the state, a transition out of the associated state occurs.

[temp > 75 && before(12.34,sec)]

Tips
• You can use quotation marks to enclose the keywords 'tick', 'wakeup', 'sec',

'msec', and 'usec'. For example, before(5,'tick') is equivalent to
before(5,tick).

See Also
after | at | every

Topics
“Control Chart Execution by Using Temporal Logic”

Introduced in R2014b

2 Operators — Alphabetical List

2-10

count
Control chart execution with the count operator

Syntax
count(C)

Description
The count(C) operator returns a double value equivalent to the number of ticks after the
conditional expression, C, becomes true. The count operator is reset if the conditional
expression becomes false. If the count operator is used within a state, it is reset when
the state that contains it is entered. If the count operator is used on a transition, it is
reset when the source state for that transition is entered.

The value for count is dependent on the step size. Changing the solver or step size for
your Simulink model affects the result of Stateflow charts that include the count
operator.

To ensure that your Stateflow chart simulates without error, do not use count with these
objects:

• Continuous time charts
• Graphical, MATLAB, or Simulink functions
• Simulink based states
• Transitions that can be reached from multiple states
• Default transitions

Use the count operator in charts that use C or MATLAB as the action language.

Examples

 count

2-11

Absolute-Time Based Transition

The transition occurs when the value of data has been greater than or equal to 2 for
longer than 5 ticks.

[count(data >= 2) > 5]

State Action

When the state is exited, x is set to the number of ticks that data has been greater than 5.

ex: x = count(data>5)

See Also
duration | elapsed | temporalCount

Topics
“Control Chart Execution by Using Temporal Logic”

Introduced in R2019a

2 Operators — Alphabetical List

2-12

discard
Discard message

Syntax
discard(message_name)

Description
discard(message_name) discards a valid message. After a chart discards a message, it
can remove another message from the queue in the same time step. A chart cannot access
the data of a discarded message.

Examples

Discard Message in State Action

Check the queue for message M. If a message is present, remove it from the queue. If the
message has a data value equal to 3, discard the message.

during:
if receive(M) == true
 if M.data == 3
 discard(M);
 end
end

See Also
receive

Topics
“Control Message Activity in Stateflow Charts”

 discard

2-13

Introduced in R2018b

2 Operators — Alphabetical List

2-14

duration
Control chart execution with the duration operator

Syntax
duration(C)

Description
duration(C) returns the number of seconds after the conditional expression, C,
becomes true. The duration operator is reset if the conditional expression becomes
false. If the duration operator is used within a state, it is reset when the state that
contains it is entered. If the duration operator is used on a transition, it is reset when
the source state for that transition is entered.

Examples

Absolute-Time Based Transition

The transition occurs when the value of x has been greater than or equal to 0 for longer
than 0.1 seconds.

[duration(x >= 0) > 0.1]

See Also
count | elapsed | temporalCount

Topics
“Control Chart Execution by Using Temporal Logic”
“Control Oscillations by Using the duration Operator”
“Reduce Transient Signals by Using Debouncing Logic”

 duration

2-15

Introduced in R2017a

2 Operators — Alphabetical List

2-16

elapsed
Control chart execution with the elapsed operator

Syntax
elapsed(sec)

Description
elapsed(sec) returns the simulation time in seconds (sec) that has elapsed since the
activation of the associated state.

The elapsed operator resets the counter for sec to 0 each time the associated state
reactivates.

Examples

Absolute-Time Based State Action

At the entry and during actions of the state, y is assigned the length of time that the state
has been active.

en, du: y = elapsed(sec);

Tips
• In state and transition actions, you can use quotation marks to enclose the keyword

'sec'. For example:

y = elapsed('sec');

 elapsed

2-17

See Also
count | duration | temporalCount

Topics
“Control Chart Execution by Using Temporal Logic”

Introduced in R2017a

2 Operators — Alphabetical List

2-18

every
Control chart execution with the every operator

Syntax
every(n,E)
every(n,time_unit)

Description
every(n,E) returns true at every nth occurrence of the base event E since activation of
the associated state. Otherwise, the operator returns false.

In a chart with no input events, every(n,tick) or every(n,wakeup) returns true if
the chart has woken up an integer multiple of n times since activation of the associated
state.

The every operator resets the counter for E to 0 each time the associated state
reactivates.

every(n,time_unit) returns true every n units of simulation time since activation of
the associated state. Otherwise, the operator returns false. Specify time_unit as
seconds (sec), milliseconds (msec), or microseconds (usec).

The every operator resets the counter for sec, msec, and usec to 0 each time the
associated state reactivates.

Use of every as an absolute-time temporal logic operator is supported only in standalone
charts for execution as MATLAB objects.

Examples

 every

2-19

Event Based State Action (on every)

A status message on appears every 5 CLK cycles after activation of the state.

on every(5,CLK): status('on');

Absolute-Time Based State Action (on every)

A status message is displayed every 2 seconds after activation of the state.

on every(2,sec): disp('Hello!');

Tips
• You can use quotation marks to enclose the keywords 'tick', 'wakeup', 'sec',

'msec', and 'usec'. For example, every(5,'tick') is equivalent to
every(5,tick).

• Use of every as an absolute-time temporal logic operator is supported only in
standalone charts for execution as MATLAB objects. In a Simulink model, use an outer
self-loop transition with the after operator instead. For more information, see “Use
an Outer Self-Loop Transition with the after Operator to Replace the every Operator”.

See Also
after | at | before

Topics
“Control Chart Execution by Using Temporal Logic”

Introduced in R2014b

2 Operators — Alphabetical List

2-20

forward
Forward message

Syntax
forward(input_message_name,output_message_name)

Description
forward(input_message_name,output_message_name) forwards a message from
an input queue to an output port, or to and from local message queues. After a chart
forwards a message, it can remove another message from the queue in the same time
step.

Examples

Forward an Input Message

Checks the input queue for message M_in. If a message is present, the chart removes the
message from the queue and forwards it to the output port M_out. After the chart
forwards the message, the message is no longer valid.

on M_in: forward(M_in,M_out);

See Also
receive

Topics
“Control Message Activity in Stateflow Charts”

 forward

2-21

Introduced in R2018b

2 Operators — Alphabetical List

2-22

hasChanged
Detect change in data since last time step

Syntax
tf = hasChanged(u)

Description
tf = hasChanged(u) returns true if the value of u at the beginning of the current time
step is different from the value of u at the beginning of the previous time step. If multiple
input events occur in the same time step, hasChanged returns true when the value of u
changes between input events.

The argument u can be:

• A scalar variable.
• A matrix or an element of a matrix. See “Supported Operations for Vectors and

Matrices”.
• A structure or a field in a structure. See “Index and Assign Values to Stateflow

Structures”.
• Any valid combination of structure fields or matrix indices.

Indices can be numbers or expressions that evaluate to a scalar value. If u is a matrix,
hasChanged returns true if any element of u has changed value since the last time step
or input event. If u is a structure, hasChanged returns true if any field of u has changed
value since the last time step or input event.

The scope of u depends on the chart action language:

• MATLAB as the action language: Input only.
• C as the action language: Input, Output, Local, or Data Store Memory.

The argument u cannot be a nontrivial expression or a custom code variable.

 hasChanged

2-23

Examples

Detect Change in Structure

Returns true if any field of the structure struct has changed value since the last time
step or input event.

hasChanged(struct)

Detect Change in Structure Field

Returns true if the structure field of struct.field has changed value since the last
time step or input event.

hasChanged(struct.field)

Detect Change in Matrix

Returns true if any element of the matrix M has changed value since the last time step or
input event.

hasChanged(M)

Detect Change in Matrix Element

Returns true if the element in row 1 and column 3 of the matrix M has changed value
since the last time step or input event.

In charts that use MATLAB as the action language:

hasChanged(M(1,3))

In charts that use C as the action language:

2 Operators — Alphabetical List

2-24

hasChanged(M[0][2])

Tips
• The hasChanged operator returns false if the chart writes to the data but does not

change the data value.
• If you enable the chart option Initialize Outputs Every Time Chart Wakes Up, do

not use an output as the argument of the hasChanged operator. With this option
enabled, the hasChanged operator always returns false. For more information, see
“Initialize Outputs Every Time Chart Wakes Up”.

• The hasChanged operator is supported only in Stateflow charts in Simulink models.

See Also
hasChangedFrom | hasChangedTo

Topics
“Detect Changes in Data Values”
“Supported Operations for Vectors and Matrices”
“Index and Assign Values to Stateflow Structures”
“Convert Scalars to Nonscalars by Using Scalar Expansion”

Introduced in R2007a

 hasChanged

2-25

hasChangedFrom
Detect change in data from specified value

Syntax
tf = hasChangedFrom(u,v)

Description
tf = hasChangedFrom(u,v) returns true if both of these conditions are true:

• The value of u at the beginning of the previous time step was equal to v.
• The value of u at the beginning of the current time step is not equal to v.

If multiple input events occur in the same time step, hasChangedFrom returns true
when the value of u changes from the value v between input events.

The first argument u can be:

• A scalar variable.
• A matrix or an element of a matrix. See “Supported Operations for Vectors and

Matrices”.
• A structure or a field in a structure. See “Index and Assign Values to Stateflow

Structures”.
• Any valid combination of structure fields or matrix indices.

Indices can be numbers or expressions that evaluate to a scalar value.

The second argument v can be any expression that resolves to a value that is comparable
with u:

• If u is a scalar, then v must resolve to a scalar value.
• If u is a matrix, then v must resolve to a matrix value with the same dimensions as u.

The hasChangedFrom operator returns true if the previous value of u was equal to v
and any element of u has changed value since the last time step or input event.

2 Operators — Alphabetical List

2-26

Alternatively, in a chart that uses C as the action language, v can resolve to a scalar
value. The chart uses scalar expansion to compare u to a matrix whose elements are
all equal to the value specified by v. See “Convert Scalars to Nonscalars by Using
Scalar Expansion”.

• If u is a structure, then v must resolve to a structure value whose field specification
matches u exactly. The hasChangedFrom operator returns true if the previous value
of u was equal to v and any field of u has changed value since the last time step or
input event.

The scope of u depends on the chart action language:

• MATLAB as the action language: Input only.
• C as the action language: Input, Output, Local, or Data Store Memory.

The argument u cannot be a nontrivial expression or a custom code variable.

Examples

Detect Change in Structure

Returns true if the previous value of the structure struct was equal to structValue
and any field of struct has changed value since the last time step or input event.

hasChangedFrom(struct,structValue)

Detect Change in Structure Field

Returns true if the structure field struct.field has changed from the value 5 since
the last time step or input event.

hasChangedFrom(struct.field,5)

Detect Change in Matrix

Returns true if the previous value of the matrix M was equal to matrixValue and any
element of M has changed value since the last time step or input event.

 hasChangedFrom

2-27

hasChangedFrom(M,matrixValue)

Detect Change in Matrix Element

Returns true if the element in row 1 and column 3 of the matrix M has changed from the
value 7 since the last time step or input event.

In charts that use MATLAB as the action language:

hasChangedFrom(M(1,3),7)

In charts that use C as the action language:

hasChangedFrom(M[0][2],7)

Tips
• The hasChangedFrom operator returns false if the chart writes to the data but does

not change the data value.
• If you enable the chart option Initialize Outputs Every Time Chart Wakes Up, do

not use an output as the argument of the hasChangedFrom operator. With this option
enabled, the hasChangedFrom operator always returns false. For more information,
see “Initialize Outputs Every Time Chart Wakes Up”.

• The hasChangedFrom operator is supported only in Stateflow charts in Simulink
models.

See Also
hasChanged | hasChangedTo

Topics
“Detect Changes in Data Values”
“Supported Operations for Vectors and Matrices”
“Index and Assign Values to Stateflow Structures”
“Convert Scalars to Nonscalars by Using Scalar Expansion”

2 Operators — Alphabetical List

2-28

Introduced in R2007a

 hasChangedFrom

2-29

hasChangedTo
Detect change in data to specified value

Syntax
tf = hasChangedTo(u,v)

Description
tf = hasChangedTo(u,v) returns true if both of these conditions are true:

• The value of u at the beginning of the previous time step was not equal to v.
• The value of u at the beginning of the current time step is equal to v.

If multiple input events occur in the same time step, hasChangedTo returns true when
the value of u changes to the value v between input events.

The first argument u can be:

• A scalar variable.
• A matrix or an element of a matrix. See “Supported Operations for Vectors and

Matrices”.
• A structure or a field in a structure. See “Index and Assign Values to Stateflow

Structures”.
• Any valid combination of structure fields or matrix indices.

Indices can be numbers or expressions that evaluate to a scalar value.

The second argument v can be any expression that resolves to a value that is comparable
with u:

• If u is a scalar, then v must resolve to a scalar value.
• If u is a matrix, then v must resolve to a matrix value with the same dimensions as u.

The hasChangedTo operator returns true if any element of u has changed value
since the last time step or input event and the current value of u is equal to v.

2 Operators — Alphabetical List

2-30

Alternatively, in a chart that uses C as the action language, v can resolve to a scalar
value. The chart uses scalar expansion to compare u to a matrix whose elements are
all equal to the value specified by v. See “Convert Scalars to Nonscalars by Using
Scalar Expansion”.

• If u is a structure, then v must resolve to a structure value whose field specification
matches u exactly. The hasChangedTo operator returns true if any field of u has
changed value since the last time step or input event and the current value of u is
equal to v.

The scope of u depends on the chart action language:

• MATLAB as the action language: Input only.
• C as the action language: Input, Output, Local, or Data Store Memory.

The argument u cannot be a nontrivial expression or a custom code variable.

Examples

Detect Change in Structure

Returns true if any field of struct has changed value since the last time step or input
event and the current value of the structure struct is equal to structValue.

hasChangedTo(struct,structValue)

Detect Change in Structure Field

Returns true if the structure field struct.field has changed to the value 5 since the
last time step or input event.

hasChangedTo(struct.field,5)

Detect Change in Matrix

Returns true if any element of M has changed value since the last time step or input
event and the current value of the matrix M is equal to matrixValue.

 hasChangedTo

2-31

hasChangedTo(M,matrixValue)

Detect Change in Matrix Element

Returns true if the element in row 1 and column 3 of the matrix M has changed to the
value 7 since the last time step or input event.

In charts that use MATLAB as the action language:

hasChangedTo(M(1,3),7)

In charts that use C as the action language:

hasChangedTo(M[0][2],7)

Tips
• The hasChangedTo operator returns false if the chart writes to the data but does

not change the data value.
• If you enable the chart option Initialize Outputs Every Time Chart Wakes Up, do

not use an output as the argument of the hasChangedTo operator. With this option
enabled, the hasChangedTo operator always returns false. For more information,
see “Initialize Outputs Every Time Chart Wakes Up”.

• The hasChangedTo operator is supported only in Stateflow charts in Simulink models.

See Also
hasChanged | hasChangedFrom

Topics
“Detect Changes in Data Values”
“Supported Operations for Vectors and Matrices”
“Index and Assign Values to Stateflow Structures”
“Convert Scalars to Nonscalars by Using Scalar Expansion”

Introduced in R2007a

2 Operators — Alphabetical List

2-32

isvalid
Determine if message is valid

Syntax
isvalid(message_name)

Description
isvalid(message_name) checks if a message is valid. A message is valid if the chart
has removed it from the queue and has not forwarded or discarded it.

Examples

Check Message in State Action

Determine whether the message M is valid. If the message is valid and has a data value
equal to 6, discard the message.

during:
if isvalid(M) == true
 if M.data == 6
 discard(M);
 end
end

Tips
• Use the isvalid operator to check if a message is valid in a Simulink model that

contains more than one Stateflow chart.

 isvalid

2-33

See Also
discard | forward | receive

Topics
“Control Message Activity in Stateflow Charts”

Introduced in R2018b

2 Operators — Alphabetical List

2-34

length
Determine length of message queue

Syntax
length(message_name)

Description
length(message_name) checks the number of messages in a message queue.

Examples

Check Queue Length in State Action

Check the queue for message M. If a message is present, remove it from the queue. If
exactly seven messages remain in the queue, increment the value of x.

during:
if receive(M) == true
 if length(M) == 7
 x = x+1;
 end
end

See Also
overflowed | receive

Topics
“Control Message Activity in Stateflow Charts”

 length

2-35

Introduced in R2018b

2 Operators — Alphabetical List

2-36

overflowed
Determine when message queue overflows

Syntax
overflowed(message_name)

Description
overflowed(message_name) checks whether a message is lost because it was sent to a
queue that was already full. In each time step, the value of this operator is set when a
chart adds a message to, or removes a message from, a queue. It is invalid to use the
overflowed operator before sending or retrieving a message in the same time step.

• To check the overflow status of an input message queue, first remove a message from
the queue.

• To check the overflow status of an output message queue, first add a message to the
queue.

• To check the overflow status of a local message queue, first add a message to the
queue or remove a message from the queue.

Examples

Check for Overflow in Transition

Check the input or local queue for message M. If a message is present and the queue has
overflowed, transition occurs.

M[overflowed(M)]

 overflowed

2-37

Check for Overflow in State Action

Check the input or local queue for message M. If a message is present and the queue has
overflowed, increment the value of x.

on M:
if overflowed(M) == true
 x = x+1;
end

Check for Overflow After Sending Message

Send message and check for overflow. If the queue overflows, increment the value of x.

entry:
M.data = 3;
send(M);
if overflowed(M) == true
 x = x+1;
end

Tips
• By default, when a message queue overflows, simulation stops with an error. To

prevent a run-time error and allow the overflowed operator to dynamically react to
dropped messages, set the value of the Queue Overflow Diagnostic property to
Warning or None. For more information, see “Queue Overflow Diagnostic”.

See Also
length | receive | send

Topics
“Control Message Activity in Stateflow Charts”
“Set Properties for a Message”

Introduced in R2018b

2 Operators — Alphabetical List

2-38

receive
Extract message from queue

Syntax
receive(message_name)

Description
receive(message_name) extracts an input or local message from queue. If a valid
message exists, receive returns true. If a valid message does not exist but there is a
message in the queue, the chart removes the message from the queue and receive
returns true. If a valid message does not exist and there are no messages in the queue,
receive returns false.

Examples

Extract Message in State Action

Check the queue for message M and increment the value of x if both of these conditions
are true:

• A message is present in the queue.
• The data value of the message is equal to 3.

If a message is not present or if the data value is not equal to 3, then the value of x does
not change. If a message is present, the chart removes it from the queue regardless of
whether x is modified.

during:
if receive(M) && M.data == 3

 receive

2-39

 x = x+1;
end

See Also
send

Topics
“Control Message Activity in Stateflow Charts”

Introduced in R2018b

2 Operators — Alphabetical List

2-40

send
Broadcast message or event

Syntax
send(message_name)
send(output_event_name)
send(local_event_name,state_name)
send(state_name.local_event_name)

Description
send(message_name) sends a local or output message.

send(output_event_name) sends an output event.

send(local_event_name,state_name) broadcasts a local event to state_name and
any offspring of that state in the hierarchy.

send(state_name.local_event_name) broadcasts a local event to its parent state
state_name and any offspring of that state in the hierarchy.

Examples

Broadcast Message

Send a local or output message M with a data value of 3.

M.data = 3;
send(M);

 send

2-41

Broadcast Output Event

Send an output event e.

send(e);

Broadcast Directed Local Event

Send a local event e to state A.A1 and any of its substates.

send(e,A.A1);

Broadcast by Using Qualified Event Name

Send a local event e to its parent state A and any of its substates.

send(A.e);

See Also
receive

Topics
“Control Message Activity in Stateflow Charts”
“Activate a Simulink Block by Sending Output Events”
“Broadcast Local Events to Synchronize Parallel States”

Introduced in R2018b

2 Operators — Alphabetical List

2-42

str2ascii
Convert string to array of type uint8

Syntax
A = str2ascii(str,n)

Description
A = str2ascii(str,n) returns array of type uint8 containing ASCII values for the
first n characters in str, where n is a positive integer.

Use of variables or expressions for n is not supported.

Examples

String to ASCII Values

Return uint8 array {-72,101,108,108,111}.

A = str2ascii("Hello",5);

Tips
• Use in Stateflow charts that use C as the action language.
• Enclose literal strings with single or double quotes.

See Also
ascii2str

 str2ascii

2-43

Topics
“Manage Textual Information by Using Strings”
“Share String Data with Custom C Code”

Introduced in R2018a

2 Operators — Alphabetical List

2-44

str2double
Convert string to double precision value

Syntax
X = str2double(str)

Description
X = str2double(str) converts the text in string str to a double-precision value.

str contains text that represents a number. Text that represents a number can contain:

• Digits
• A decimal point
• A leading + or - sign
• An e preceding a power of 10 scale factor

If str2double cannot convert text to a number, then it returns a NaN value.

Examples

String Containing Decimal Notation

Return a value of -12.345.

X = srt2double("-12.345");

String Containing Exponential Notation

Return a value of 123400.

 str2double

2-45

X = srt2double("1.234e5");

Tips
• Use in Stateflow charts that use C as the action language.
• Enclose literal strings with single or double quotes.

See Also
tostring

Topics
“Manage Textual Information by Using Strings”

Introduced in R2018a

2 Operators — Alphabetical List

2-46

strcat
Concatenate strings

Syntax
dest = strcat(s1,...,sN)

Description
dest = strcat(s1,...,sN) concatenates strings s1,...,sN.

Examples

Concatenation of Strings

Concatenate strings to form "Stateflow".

s1 = "State";
s2 = "flow";
dest = strcat(s1,s2)

Tips
• Use in Stateflow charts that use C as the action language.
• Enclose literal strings with single or double quotes.

See Also
strcpy | substr

 strcat

2-47

Topics
“Manage Textual Information by Using Strings”

Introduced in R2018b

2 Operators — Alphabetical List

2-48

strcmp
Compare strings

Syntax
tf = strcmp(s1,s2)
s1 == s2
s1 != s2
tf = strcmp(s1,s2,n)

Description
tf = strcmp(s1,s2) compares strings s1 and s2. Returns 0 if the two strings are
identical. Otherwise returns a nonzero integer.

• The sign of the output value depends on the lexicographic ordering of the input strings
s1 and s2.

• The magnitude of the output value depends on the compiler that you use. This value
can differ in simulation and generated code.

Strings are considered identical when they have the same size and content.

This operator is consistent with the C library function strcmp or the C++ function
string.compare, depending on the compiler that you select for code generation. The
operator behaves differently than the function strcmp in MATLAB.

s1 == s2 is an alternative way to execute strcmp(s1,s2) == 0.

s1 != s2 is an alternative way to execute strcmp(s1,s2) != 0.

tf = strcmp(s1,s2,n) returns 0 if the first n characters in s1 and s2 are identical.

Examples

 strcmp

2-49

Comparison by Using strcmp

Return a value of 0 (strings are equal).

tf = strcmp("abc","abc");

Return a nonzero value (strings are not equal).

tf = strcmp("abc","abcd");

Comparison by Using ==

Return a value of true.

"abc" == "abc";

Comparison by Using !=

Return a value of true.

"abc" != "abcd";

Comparison of Substrings

Return a value of 0 (substrings are equal).

tf = strcmp("abc","abcd",3);

Tips
• Use in Stateflow charts that use C as the action language.
• Enclose literal strings with single or double quotes.

See Also
substr

2 Operators — Alphabetical List

2-50

Topics
“Manage Textual Information by Using Strings”

Introduced in R2018b

 strcmp

2-51

strcpy
Assign string value

Syntax
dest = src
strcpy(dest,src)

Description
dest = src assigns string src to dest.

strcpy(dest,src) is an alternative way to execute dest = src.

Examples

Assignment by Using =

Assign string data to s1 and s2.

s1 = 'hello';
s2 = "good bye";

Assignment by Using strcpy

Assign string data to s3 and s4.

2 Operators — Alphabetical List

2-52

strcpy(s3,'howdy');
strcpy(s4,"so long");

Tips
• Use in Stateflow charts that use C as the action language.
• Source and destination strings must refer to different symbols.
• Enclose literal strings with single or double quotes.

See Also

Topics
“Manage Textual Information by Using Strings”

Introduced in R2018b

 strcpy

2-53

strlen
Determine length of string

Syntax
L = strlen(str)

Description
L = strlen(str) returns the number of characters in the string str.

Examples

Number of Characters in String

Return a value of 9.

L = strlen("Stateflow");

Tips
• Use in Stateflow charts that use C as the action language.
• Enclose literal strings with single or double quotes.

See Also

Topics
“Manage Textual Information by Using Strings”

2 Operators — Alphabetical List

2-54

Introduced in R2018b

 strlen

2-55

substr
Extract substring from string

Syntax
dest = substr(str,i,n)

Description
dest = substr(str,i,n) returns the substring of length n starting at the i-th
character of string str. Use zero-based indexing.

Examples

Extract Substring

Extract substring "Stateflow" from a longer string.

str = "Stateflow rule the waves";
dest = substr(str,0,9);

Tips
• Use in Stateflow charts that use C as the action language.
• Use zero-based indexing.
• Enclose literal strings with single or double quotes.

See Also
strcat | strcpy | strlen

2 Operators — Alphabetical List

2-56

Topics
“Manage Textual Information by Using Strings”

Introduced in R2018b

 substr

2-57

temporalCount
Control chart execution with the temporalCount operator

Syntax
temporalCount(E)
temporalCount(time_unit)

Description
temporalCount(E) increments by 1 and returns a positive integer value for each
occurrence of the base event E that takes place after activation of the associated state.
Otherwise, the operator returns a value of 0.

In a chart with no input events, temporalCount(tick) or temporalCount(wakeup)
returns the number of times that the chart has woken up since activation of the
associated state.

The temporalCount operator resets the counter for E to 0 each time the associated state
reactivates.

temporalCount(time_unit) counts and returns the number of units simulation time
that have elapsed since activation of the associated state. Specify time_unit as seconds
(sec), milliseconds (msec), or microseconds (usec).

The temporalCount operator resets the counter for sec, msec and usec to 0 each time
the associated state reactivates.

Examples

2 Operators — Alphabetical List

2-58

State Action (during)

This action counts and returns the integer number of ticks that have elapsed since
activation of the state. Then, the action assigns to the variable y the value of the mm array
whose index is the value that the temporalCount operator returns.

du: y = mm[temporalCount(tick)];

State Action (exit)

This action counts and returns the number of seconds of simulation time that pass
between activation and deactivation of the state.

ex: y = temporalCount(sec);

Tips
• You can use quotation marks to enclose the keywords 'tick', 'wakeup', 'sec',

'msec', and 'usec'. For example, temporalCount('tick') is equivalent to
temporalCount(tick).

See Also
count | duration | elapsed

Topics
“Control Chart Execution by Using Temporal Logic”

Introduced in R2008a

 temporalCount

2-59

tostring
Convert numeric value to string

Syntax
dest = tostring(X)

Description
dest = tostring(X) converts numeric, Boolean, or enumerated data X to a string.

Examples

Numeric Value to String

Convert numeric value to string "1.2345".

dest = tostring(1.2345);

Boolean Value to String

Convert Boolean value to string "true".

dest = tostring(1==1);

Enumerated Value to String

Convert enumerated value to string "RED".

2 Operators — Alphabetical List

2-60

dest = tostring(RED);

Tips
• Use in Stateflow charts that use C as the action language.

See Also
str2double | strcpy

Topics
“Manage Textual Information by Using Strings”

Introduced in R2018b

 tostring

2-61

Block Reference

3

Chart
Implement control logic with finite state machine
Library: Stateflow

Description
A finite state machine is a representation of an event-driven (reactive) system. In an
event-driven system, the system responds to an event by making a transition from one
state (mode) to another. This transition occurs if the condition defining the change is true.

A Stateflow chart is a graphical representation of a finite state machine. States and
transitions form the basic elements of the system. You can also represent stateless flow
charts.

For example, you can use Stateflow charts to control a physical plant in response to
events such as a temperature and pressure sensors, clocks, and user-driven events.

You can also use a state machine to represent the automatic transmission of a car. The
transmission has these operating states: park, reverse, neutral, drive, and low. As the
driver shifts from one position to another, the system makes a transition from one state to
another, for example, from park to reverse.

A Stateflow chart can use MATLAB or C as the action language to implement control
logic.

This block diagram represents a machine on an assembly line that feeds raw material to
other parts of the line. It contains a chart, Feeder, with MATLAB as the action language.

3 Block Reference

3-2

To open the chart, double-click the Feeder block in the model.

 Chart

3-3

For a tutorial on this model, see “Model an Assembly Line Feeder”.

Ports

Input
Port_1 — Input port
scalar | vector | matrix

3 Block Reference

3-4

When you create input data in the Symbols window, Stateflow creates input ports. The
input data that you create has a corresponding input port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output port
scalar | vector | matrix

When you create output data in the Symbols window, Stateflow creates output ports. The
output data that you create has a corresponding output port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Parameters on the Code Generation tab require Simulink Coder™ or Embedded Coder®.

Main
Show port labels — Select how to display port labels
FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port labels on the Chart block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
Chart block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Chart block.

 Chart

3-5

SignalName
If a signal name exists, display the name of the signal connected to the port on the
Chart block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block
library, you can create and open links to the chart and can make and modify local
copies of the chart but you cannot change the permissions or modify the contents of
the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can
create links to the chart in a model but you cannot open, modify, change permissions,
or create local copies of the chart.

Programmatic Use
Parameter: Permissions
Type: character vector
Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Treat as atomic unit — Control execution of a subsystem as one unit
off (default) | on

When determining the execution order of block methods, causes Simulink to treat the
chart as a unit.

3 Block Reference

3-6

 off
When determining block method execution order, treat all blocks in the chart as being
at the same level in the model hierarchy as the chart. This hierarchy treatment can
cause the execution of methods of blocks in the chart to be interleaved with the
execution of methods of blocks outside the chart.

 on
When determining the execution order of block methods, treat the chart as a unit. For
example, when Simulink needs to compute the output of the chart, Simulink invokes
the output methods of all the blocks in the chart before invoking the output methods
of other blocks at the same level as the chart block.

Dependency

If you select this parameter, you enable the Minimize algebraic loop occurrences,
Sample time, and Function packaging parameters. Function packaging requires the
Simulink Coder software.

Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector
Value: 'off' | 'on'
Default: 'off'
See also

• “Generate Reusable Code for Atomic Subcharts”

Minimize algebraic loop occurrences — Control elimination of algebraic
loops
off (default) | on

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

 Chart

3-7

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different
rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as
inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf),
Simulink displays an error message when you update or simulate the model. For
example, suppose all the blocks in the chart must run 5 times a second. To ensure this
time, specify the sample time of the chart as 0.2. In this example, if any of the blocks
in the chart specify a sample time other than 0.2, -1, or inf, Simulink displays an
error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates, use
this sample time.

[Ts 0]
Specify periodic sample time.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: SystemSampleTime
Type: character vector
Value: '-1' | '[Ts 0]'
Default: '-1'

3 Block Reference

3-8

Treat as grouped when propagating variant conditions — Control treating
subsystem as unit
on (default) | off

When propagating variant conditions from Variant Source blocks or to Variant Sink
blocks, causes Simulink to treat the chart as a unit.

 on
Simulink treats the chart as a unit when propagating variant conditions from Variant
Source blocks or to Variant Sink blocks. For example, when Simulink computes the
variant condition of the chart, it propagates that condition to all the blocks in the
chart.

 off
Simulink treats all blocks in the chart as being at the same level in the model
hierarchy as the chart itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation
Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

Auto
Simulink Coder chooses the optimal format for your system based on the type and
number of instances of the chart that exist in the model.

Inline
Simulink Coder inlines the chart unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Charts with
this setting generate functions that might have arguments depending on the

 Chart

3-9

“Function interface” (Simulink) parameter setting. You can name the generated
function and file using parameters “Function name” (Simulink) and “File name (no
extension)” (Simulink). These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code
when a model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused
in the generated code of a model reference hierarchy that includes multiple instances
of a chart across referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function,
you can designate each one of them as Auto or as Reusable function. It is best to
use one because using both creates two reusable functions, one for each designation.
The outcomes of these choices differ only when reuse is not possible. Selecting Auto
does not allow for control of the function or file name for the chart code.

• The Reusable function and Auto options both determine whether multiple
instances of a chart exist and the code can be reused. The options behave differently
when it is impossible to reuse the code. In this case, Auto yields inlined code, or if
circumstances prohibit inlining, separate functions for each chart instance.

• If you select the Reusable function while your generated code is under source
control, set File name options to Use subsystem name, Use function name, or
User specified. Otherwise, the names of your code files change whenever you
modify your model, which prevents source control on your files.

Dependency

• This parameter requires Simulink Coder.
• To enable this parameter, select Treat as atomic unit.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and

an ERT-based system target file)

3 Block Reference

3-10

• Memory section for execution functions (requires Embedded Coder and an ERT-
based system target file)

• Setting this parameter to Nonreusable function enables Function with separate
data (requires a license for Embedded Coder and an ERT-based system target file).

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also

Introduced in R2013b

 Chart

3-11

Sequence Viewer
Display messages, events, states, transitions, and functions between blocks during
simulation
Library: SimEvents

Stateflow

Description
The Sequence Viewer block displays messages, events, states, transitions, and functions
between certain blocks during simulation. The blocks that you can display are called
lifeline blocks and include:

• Subsystems
• Referenced models
• Blocks that contain messages, such as Stateflow charts
• Blocks that call functions or generate events, such as Function Caller, Function-Call

Generator, and MATLAB Function blocks
• Blocks that contain functions, such as Function-Call Subsystem and Simulink Function

blocks

To see states, transitions, and events for lifeline blocks in a referenced model, you must
have a Sequence Viewer block in the referenced model. Without a Sequence Viewer block
in the referenced model, you can see only messages and functions for lifeline blocks in the
referenced model.

Parameters
Time Precision for Variable Step — Adjust time increment precision
3 (default)

When using a variable step solver, change this parameter to adjust the time precision for
the sequence viewer.

3 Block Reference

3-12

History — Maximum number of events to keep in viewer
5000 (default)

See Also
“Use the Sequence Viewer Block to Visualize Messages, Events, and Entities” (SimEvents)

Introduced in R2015b

 Sequence Viewer

3-13

State Transition Table
Represent modal logic in tabular format
Library: Stateflow

Description
When you want to represent modal logic in tabular format, use this block. The State
Transition Table block uses only MATLAB as the action language.

Using the State Transition Table Editor, you can:

• Add states and enter state actions.
• Add hierarchy among your states.
• Enter conditions and actions for state-to-state transitions.
• Specify default transitions, inner transitions, and self-loop transitions.
• Add input or output data and events.
• Set breakpoints for debugging.
• Run diagnostics to detect parser errors.
• View automatically generated content as you edit the table.

For more information about the State Transition Table Editor, see “State Transition Table
Operations”.

Ports

Input
Port_1 — Input port
scalar | vector | matrix

3 Block Reference

3-14

When you create input data in the Symbols window, Stateflow creates input ports. The
input data that you create has a corresponding input port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
Port_1 — Output port
scalar | vector | matrix

When you create output data in the Symbols window, Stateflow creates output ports. The
output data that you create has a corresponding output port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Parameters on the Code Generation tab require Simulink Coder or Embedded Coder.

Main
Show port labels — Select how to display port labels
FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port labels on the Chart block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
Chart block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Chart block.

 State Transition Table

3-15

SignalName
If a signal name exists, display the name of the signal connected to the port on the
Chart block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block
library, you can create and open links to the chart and can make and modify local
copies of the chart but you cannot change the permissions or modify the contents of
the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can
create links to the chart in a model but you cannot open, modify, change permissions,
or create local copies of the chart.

Programmatic Use
Parameter: Permissions
Type: character vector
Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Treat as atomic unit — Control execution of a subsystem as one unit
off (default) | on

When determining the execution order of block methods, causes Simulink to treat the
chart as a unit.

3 Block Reference

3-16

 off
When determining block method execution order, treat all blocks in the chart as being
at the same level in the model hierarchy as the chart. This hierarchy treatment can
cause the execution of methods of blocks in the chart to be interleaved with the
execution of methods of blocks outside the chart.

 on
When determining the execution order of block methods, treat the chart as a unit. For
example, when Simulink needs to compute the output of the chart, Simulink invokes
the output methods of all the blocks in the chart before invoking the output methods
of other blocks at the same level as the chart block.

Dependency

If you select this parameter, you enable the Minimize algebraic loop occurrences,
Sample time, and Function packaging parameters. Function packaging requires the
Simulink Coder software.

Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector
Value: 'off' | 'on'
Default: 'off'
See also

• “Generate Reusable Code for Atomic Subcharts”

Minimize algebraic loop occurrences — Control elimination of algebraic
loops
off (default) | on

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

 State Transition Table

3-17

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different
rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as
inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf),
Simulink displays an error message when you update or simulate the model. For
example, suppose all the blocks in the chart must run 5 times a second. To ensure this
time, specify the sample time of the chart as 0.2. In this example, if any of the blocks
in the chart specify a sample time other than 0.2, -1, or inf, Simulink displays an
error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates, use
this sample time.

[Ts 0]
Specify periodic sample time.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: SystemSampleTime
Type: character vector
Value: '-1' | '[Ts 0]'
Default: '-1'

3 Block Reference

3-18

Treat as grouped when propagating variant conditions — Control treating
subsystem as unit
on (default) | off

When propagating variant conditions from Variant Source blocks or to Variant Sink
blocks, causes Simulink to treat the chart as a unit.

 on
Simulink treats the chart as a unit when propagating variant conditions from Variant
Source blocks or to Variant Sink blocks. For example, when Simulink computes the
variant condition of the chart, it propagates that condition to all the blocks in the
chart.

 off
Simulink treats all blocks in the chart as being at the same level in the model
hierarchy as the chart itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation
Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

Auto
Simulink Coder chooses the optimal format for your system based on the type and
number of instances of the chart that exist in the model.

Inline
Simulink Coder inlines the chart unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Charts with
this setting generate functions that might have arguments depending on the

 State Transition Table

3-19

“Function interface” (Simulink) parameter setting. You can name the generated
function and file using parameters “Function name” (Simulink) and “File name (no
extension)” (Simulink). These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code
when a model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused
in the generated code of a model reference hierarchy that includes multiple instances
of a chart across referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function,
you can designate each one of them as Auto or as Reusable function. It is best to
use one because using both creates two reusable functions, one for each designation.
The outcomes of these choices differ only when reuse is not possible. Selecting Auto
does not allow for control of the function or file name for the chart code.

• The Reusable function and Auto options both try to determine if multiple
instances of a chart exist and if the code can be reused. The difference between the
options' behavior is that when reuse is not possible. In this case, Auto yields inlined
code, or if circumstances prohibit inlining, separate functions for each chart instance.

• If you select the Reusable function while your generated code is under source
control, set File name options to Use subsystem name, Use function name, or
User specified. Otherwise, the names of your code files change whenever you
modify your model, which prevents source control on your files.

Dependency

• This parameter requires Simulink Coder.
• To enable this parameter, select Treat as atomic unit.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and

an ERT-based system target file)

3 Block Reference

3-20

• Memory section for execution functions (requires Embedded Coder and an ERT-
based system target file)

• Setting this parameter to Nonreusable function enables Function with separate
data (requires a license for Embedded Coder and an ERT-based system target file).

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also

Introduced in R2012b

 State Transition Table

3-21

Truth Table
Represent logical decision-making behavior with conditions, decisions, and actions
Library: Stateflow

Description
The Truth Table block is a truth table function that uses MATLAB as the action language.
When you want to use truth table logic directly in a Simulink model, use this block. This
block requires Stateflow.

When you add a Truth Table block directly to a model instead of calling truth table
functions from a Stateflow chart, these advantages apply:

• It is a more direct approach than creating a truth table within a Stateflow chart,
especially if your model requires only a single truth table.

• You can define truth table inputs and outputs with inherited types and sizes.

The Truth Table block works with a subset of the MATLAB language that is optimized for
generating embeddable C code. This block generates content as MATLAB code. As a
result, you can take advantage of other tools to debug your Truth Table block during
simulation.

If you double-click the Truth Table block, the Truth Table Editor opens to display its
conditions, actions, and decisions.

Using the Truth Table Editor, you can:

• Enter and edit conditions, actions, and decisions.
• Add or modify Stateflow data and ports by using the Ports and Data Manager.
• Run diagnostics to detect parser errors.
• View generated content after simulation.

3 Block Reference

3-22

For more information about the Truth Table Editor, see “Truth Table Operations”.

Ports

Input
u — Input port
scalar | vector | matrix

When you create input data in the Symbols window, Stateflow creates input ports. The
input data that you create has a corresponding input port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output
y — Output port
scalar | vector | matrix

When you create output data in the Symbols window, Stateflow creates output ports. The
output data that you create has a corresponding output port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Parameters on the Code Generation tab require Simulink Coder or Embedded Coder.

Main
Show port labels — Select how to display port labels
FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port labels on the Chart block icon.

 Truth Table

3-23

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
Chart block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Chart block.

SignalName
If a signal name exists, display the name of the signal connected to the port on the
Chart block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block
library, you can create and open links to the chart and can make and modify local
copies of the chart but you cannot change the permissions or modify the contents of
the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can
create links to the chart in a model but you cannot open, modify, change permissions,
or create local copies of the chart.

Programmatic Use
Parameter: Permissions
Type: character vector

3 Block Reference

3-24

Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Treat as atomic unit — Control execution of a subsystem as one unit
off (default) | on

When determining the execution order of block methods, causes Simulink to treat the
chart as a unit.

 off
When determining block method execution order, treat all blocks in the chart as being
at the same level in the model hierarchy as the chart. This hierarchy treatment can
cause the execution of methods of blocks in the chart to be interleaved with the
execution of methods of blocks outside the chart.

 on
When determining the execution order of block methods, treat the chart as a unit. For
example, when Simulink needs to compute the output of the chart, Simulink invokes
the output methods of all the blocks in the chart before invoking the output methods
of other blocks at the same level as the chart block.

Dependency

If you select this parameter, you enable the Minimize algebraic loop occurrences,
Sample time, and Function packaging parameters. Function packaging requires the
Simulink Coder software.

Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector
Value: 'off' | 'on'
Default: 'off'

See also

• “Generate Reusable Code for Atomic Subcharts”

Minimize algebraic loop occurrences — Control elimination of algebraic
loops
off (default) | on

 Truth Table

3-25

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different
rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as
inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf),
Simulink displays an error message when you update or simulate the model. For
example, suppose all the blocks in the chart must run 5 times a second. To ensure this
time, specify the sample time of the chart as 0.2. In this example, if any of the blocks
in the chart specify a sample time other than 0.2, -1, or inf, Simulink displays an
error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates, use
this sample time.

[Ts 0]
Specify periodic sample time.

3 Block Reference

3-26

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: SystemSampleTime
Type: character vector
Value: '-1' | '[Ts 0]'
Default: '-1'

Treat as grouped when propagating variant conditions — Control treating
subsystem as unit
on (default) | off

When propagating variant conditions from Variant Source blocks or to Variant Sink
blocks, causes Simulink to treat the chart as a unit.

 on
Simulink treats the chart as a unit when propagating variant conditions from Variant
Source blocks or to Variant Sink blocks. For example, when Simulink computes the
variant condition of the chart, it propagates that condition to all the blocks in the
chart.

 off
Simulink treats all blocks in the chart as being at the same level in the model
hierarchy as the chart itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation
Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

 Truth Table

3-27

Auto
Simulink Coder chooses the optimal format for your system based on the type and
number of instances of the chart that exist in the model.

Inline
Simulink Coder inlines the chart unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Charts with
this setting generate functions that might have arguments depending on the
“Function interface” (Simulink) parameter setting. You can name the generated
function and file using parameters “Function name” (Simulink) and “File name (no
extension)” (Simulink). These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code
when a model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused
in the generated code of a model reference hierarchy that includes multiple instances
of a chart across referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function,
you can designate each one of them as Auto or as Reusable function. It is best to
use one because using both creates two reusable functions, one for each designation.
The outcomes of these choices differ only when reuse is not possible. Selecting Auto
does not allow for control of the function or file name for the chart code.

• The Reusable function and Auto options both try to determine if multiple
instances of a chart exist and if the code can be reused. The difference between the
options' behavior is that when reuse is not possible. In this case, Auto yields inlined
code, or if circumstances prohibit inlining, separate functions for each chart instance.

• If you select the Reusable function while your generated code is under source
control, set File name options to Use subsystem name, Use function name, or
User specified. Otherwise, the names of your code files change whenever you
modify your model, which prevents source control on your files.

Dependency

• This parameter requires Simulink Coder.

3 Block Reference

3-28

• To enable this parameter, select Treat as atomic unit.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and

an ERT-based system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-

based system target file)
• Setting this parameter to Nonreusable function enables Function with separate

data (requires a license for Embedded Coder and an ERT-based system target file).

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

 Truth Table

3-29

See Also
Introduced before R2006a

3 Block Reference

3-30

